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Introduction

Scilab is an open sourcs®ftware pakage for scientific anchumerical compiing developed and
freely distributed by the Scilab Consorti (see [1]).

It offers a high level programming language ang #ilows the user to fast implement his/her «
applications in a smart waywithout requiringstrong programming skill. Many toolboxes,
developed by the users all over the world and nsa@édable through the interr, represent a real
opportunity tocreate complex, efficient and multiplatform appiioas

Scilab is considered to be aglane of the most known MATLAB, thewctuallyhave many points
in common; the programminignguags are very similar (even if some differences aresent)
they both use a compiled version of numerical lilesato make basic computations efficient, t
offer nice graphical tools and more. Shortly, tl adoptthe same philosopl, but Scilab has the
advantage to be completely free.

Unfortunately, Scilab is notwidely spread inthe industrial context whe, on the contrary,
MATLAB and MATLAB SIMULINK are the most known angsed. This is probably due to
historical advantage th&ATLAB has over all the competitors; do not forget it has been the
first software of this kind to beroposed to the market in the mid the 80« However, it is
undoubtedly important to remember tIMATLAB has many builtin functions that Scilab do n
have (yet) and in some cases this could be detant The longer experience, the larg
investment andcwumber of people involved and, according to thé@ubpinion, also the need
satisfy the market, leatb a fastersoftware development. Aim many other occasio, also the
marketing has playea fundamental role in the diffusion the product.

Scilab is mainly used for teaching purposes anohadsly for tlis reason, it is often considered 1
adequate for the solot of real engineering problems. This is absolutalse and we would like 1
demonstrate, withithis documer, that it is possible to develop efficient and relébolversusing
Scilab also for non trivial problen

To this aim we choose the Na\-Stokes equations to model a plas&tionary and incompressit
fluid motion. The numerical solution of such equations is acyuathnsidered a difficulland
challenging taskas it can be seen readir3] and [4 just to provide two referenc. If the user has
a strong background in fluid dynamics he/she canoaisly implement more complex models tt
the one proposed in this document using the samhebStatform

Anyway, there are some industrial problems that canadequatelymodeled through these
equaions: heat exchangers, boil@nd more just to cite some applications.
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Figure 1. The Scilab logo (on the left) and the puffin logdon the right). Dr. Hu Baogang, Contributor Member
of Scilab Scientific Board, chose a puffi because “The image of puffin reflects a spirit ofreedom with proud, as
carried in the endeavor of developing ope-source software [...]".




The Navier-Stokes equations for the incompressibliéuid

Navier-Stokes equations can be derived applying lihsic laws of mechanics, such as the
conservation and the continuity principles, to femence volume of fluid (see [2] for more details).
After some mathematical manipulation one usualaches the following system of equations:

[1]

which are known as the continuity, the momentum #@uedenergy equation respectively and they
have to be solved in the domain taking into account appropriate boundary condgioThe
symbols “ " and “ ” are used to indicate the divergence and the gradperator respectively,
while , and are the unknown velocity vector, the pressure thiedtemperature fields. The
fluid properties are the density the viscosity , the thermal conductivity and the specific heat
which could depend, in a general case, on temperatu

It has to be remembered that in the most genesd equations in (1) could contain other terms,
such as heat sources or body forces which in ae bave been neglected.

For sake of simplicity we imagine all the fluid pesties as constant and we will consider, as
mentioned above, only two dimensional domains. Themer hypothesis represents a very
important simplification because the energy equaticompletely decouple and therefore it can be
solved separately once the velocity field has mmnputed using the first two equations. The latter
one can be easily removed, with some additionakifh programming.

It is fundamental to note that the momentum equasmon-linear, because of the presence of the
advection term . Moreover, the correct treatment of this term nexgia special attention, as it
will be briefly discussed in the following paragheyp especially when its contribution becomes
predominant with respect to the diffusive term.

Another source of difficulty is given by the firsfjuation, which represents the incompressibility
condition: in the followings we will discuss alsbid aspect, even if the interested reader is
addressed to the literature (see [2], [3]) for aeraetailed discussion on these topics.

For the solution of the equations reported in (&) decide to use a traditional Galerkin weighted
residual approach. As explained above, the enayggaten can be solved separately and, for this
reason, only the first two equations will be coesatl in the following. The same procedure
identically applies also for the third one.

It is necessary to introduce two virtual fields,and , which multiply the first and the second
equation respectively and integrate them in thealom

[2]

the divergence theorem can be invoked to rewrgestttond equation in a more treatable way. It is
possible to write:

[3]

The integral over the boundary vanishes, in viewhefincompressibility constraint, and therefore
the system (2) can be rewritten as:



[4]

where the order of the equation has been changexdér to solve numerically the above system it
is necessary to introduce a discretization of thaain and choose appropriate test functions. It is
well known (see for example [2]) that, in this cadee test functions used for the virtual velocity
and pressure fields have to be chosen in ordeitisfy the inf-sup condition (also known as
Babuska-Brezzi condition). For this reason we dedi use the six-noded triangular elements
depicted in Figure 2; the velocity field is modelading quadratic shape functions and two
unknowns at each node are considered, while tresypre is modeled using linear shape functions
and only three unknowns are used at the cornersnddehis way we have three unknowns in the
corner nodes and only two in the element midsidéeso

Equations (4) can be rewritten, once the discretimehas been introduced, as the appropriate sum
over the elements of certain contributions thatlmamomputed numerically by means of a standard
Gauss integration. The single element contribut@m be seen, in matrix form, as:
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where:

$ - -, is the diffusivity contribution, a (6 x 6) symmietmatrix The matrix (2 x 6)

collects ghe first derivatives in the two directsoof the quadratic shape functions.
% . 1+ 1-- , isthe convective non-linear contribution, a (6)unsymmetric matrix.
The vectorl collects the quadratic shape functions.

. 12 ; is the pressure contribution, a (6 x 3) matrixe Mector2 collects the first
derivatives of the linear shape functions in thec#iped direction.
( . 3:- , is the term coming from the incompressibility cttioeh, a (3 x 6) matrix. The

vector3 collects the linear shape functions while collects the first derivatives of the quadratic
shape functions in the specified direction.

All the integrals have to be evaluated on the etldme; these contributions have been always
computed using a “master element” (it is commorciica in a finite element approach) and a
Gauss technique with seven points.

The element matrix is clearly unsymmetric and ibtains also the nonlinear terms due to the
convection. The peculiar structure of matrix (5)ithwsome zero diagonal terms, suggests to
interpret the pressure unknowns as a sort of Lagganmultipliers which introduce a linear
constraint in the model. This constraint is actuajiven by the incompressibility condition as
imposed by the continuity equation.

The element matrix and the known vector, whichun case is always zero, have to assembled into
a global matrix and vector taking into accountdbpelied boundary conditions.

The solution strategy adopted to deal with the inear nature of the equations system is probably
the simplest one and it is usually known asrdwirsive approaclfor Picard approach An initial
guess for the velocity field has to be provided andirst system of linear equations can be
assembled and solved. In the element m&tix reported above the termn collects the guess
velocity field.



Once the linear system has been solved the newwehpelocity field can be compared with the
guess field: if no significant differences are fduhe solution process can be stopped otherwise a
new iteration has to be performed using the newoigl field just computed as the guess field.

This process usually leads to the solution in asaeable amount of iterations and it has the
advantage to be very easy to implement. For sueetare more effective techniques, such as for
example the Newton-Raphson scheme, but they ustedjyire to compute the jacobian of the
system and they are longer to implement.

We decide to use the following criterion to stop iteration process:

45675 gggd
679680% . .o 5 72 [6]
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where the index represents the iteration step a@s the solution vector, collecting both the
velocity and pressure unknowns.

The approach used in this document, that is a atdn@alerkin weighted residuals, is not ideally
suited for convection dominated problems: it isualy known that when the so-called Peclet
number, which expresses the ratio between coneeaid diffusion contributions, grows the
computed solution suffers from a non physical ¢tetaity behavior (see [2] for details).

The same problem appears also when dealing witkribegy equation (the third one in (2)), when
the convective contribution is sufficiently high.

This phenomenon can uniquely be ascribed to sorfigedey of the numerical technique; for this
reason many workarounds have been proposed toctgrrgeal with convection dominated
problems. The most known are surely the streamipweinding schemes, the Petrov-Galerkin, least
square Galerkin approaches and other stabilizédicmiques.

In this work we do not adopt any of these techmigk@owing that the computed solution with a
pure Galerkin approach will be reliable only in tbase of diffusion dominated problems. As
already mentioned above, it could be in principtesgible to implement whatever technique to
improve the code and to make the solution process densitive to the flow nature, but this is not
the objective of the work.
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Figure 2: The six-noded finite element used to disetize the fluid domain. The velocity field is mod&d using
quadratic shape functions and two unknowns at eachlack node are considered\{x and V,), while the pressure
(P) is modeled using linear shape functions and gnthree unknowns are used at the corner nodes (thred ones).

Implementation details

The first step to deal with is surely to define tfenain and its discretization. The best woulddoe t
have a parametric definition of the geometry ineordo allow an easy, may be automatic,



modification of the domain. To this aim we decidedise another open source softw&@msh(see

[2]), which has been chosen among the many otheaahle because it is really easy to use,
powerful, and it can be used also as a postprocassioa graphical tool to visualize results.

Then a text input file where the user providegdta information needed to define the model has to
be organized. We decided to define soseetionsinside which the user specifies the fluid
properties and the boundary conditions. In Figutke3input file for the channel problem solved in
the following is shown. The sectid@Fluid, $Velocityand $Pressurecan be easily recognized. In
the first one a list of fluid properties for eadhid domain in the model is provided, while in tlast

two sections the velocity field in the two directgand the pressure on the boundaries are given.
The Scilab solver has been organized in six filbésclv contain some functions grouped together
according to their role. In this way it is extremmelsy to add and remove components to the solver
leading to an easier software development. mae.scefunction is charged to manage the solution
process calling the proper functions when needestly; it is necessary to read the text file (*his
written by Gmsh containing the mesh and the input file given bg tiser. Then, all the data
structures have to be organized and the matricewvactors required for the subsequent numerical
solution have to be allocated.

The iterative process described above can now #targlobal system of equations is computed and
then solved: the best strategy to adopt in this éaisthe matrix storage is surely the sparse sehem
in order to reduce as much as possible the memasyenduring the solution. Thaucslibrary can

be invoked to solve the linear system by meansitbld decomposition and get a result very fast
and easy. It is worth mentioning that the solutbrthe linear system is invoked in Scilab with just
three command lines: with the first one the LU dweposition is computed, with the second
command the backward process is perform and fitlalynemory is cleaned up.

This friendly and easy way of managing the solutbm linear system allows the user to access a
very efficient library without spending too mucme in developing dedicated code.

At the end of each step the convergence has tdhéeked and eventually the process has to be
iterated. Once the final solution has been founekalt file is written and it can be read Gynsh

$Fluid
91 1.e-3 !Physical index, density, viscosity
$End

$Velocity

11100 !Physical index, code x, code y (1=assigned vel. in dir, 0=unknown vel. in dir), ux, uy
31100

51100

61100

71100

81100

411030

$End

$Pressure
20 IPhysical index, pressure value
$ENnd

Figure 3: The input file used to set up the channgbroblem used as a benchmark problem. It can be sedhat it
has a very simple structure: there are some sectisnwhere the user can define the fluid properties ahthe
boundary conditions directly on the physical (geonteical) entities defined in the model, and not onte nodes
This obviously simplify a lot the set up phase, aking a very compact, clear and easy to change way specify
complex conditions also on different meshes of tteame model.



Benchmark computations of a laminar flow around a glinder

In order to test the solver just written with Sbilae decided to solve a simple problem which has
been used by different authors (see [3], [6] faaraple) as a benchmark problem to test different
numerical approaches for the solution of the incasgible, steady and unsteady, Navier-Stokes
equations. In Figure 4 the problem is drawn, whkesgeometry and the boundary conditions can
be found. The fluid density is set to 1 and theassity to 10°. A parabolic (Poiseulle) velocity field

in x direction is imposed at the inlet, as showedqguation (7),

BG' E7
+g A ———
& EF [7]
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with +¢ HI , and a zero pressure condition is imposed at thiteeto The velocity in both
directions is imposed to be zero on the other baues. The Reynolds number is computed as

JK + $M, where the mean velocity at the inlet (N+ gM), the circle diametes and the
kinematic viscosity. M have been used.

In Figure 5 the adopted meshes have been drawnfifBhéas 809 elements, 1729 nodes, totally
3486 unknowns while the second has 2609 eleme#®®, Bodes, totally 11478 unknowns.

The computations can be performed on a common papto In our case, the user has to wait
around 43 [sec] to solve the first mesh, while tibk&al solution time is around 310 [sec] for the
second model; in both cases 17 iterations are sape# reach the convergence. The larger part of
the solution time is spent to compute the elementributions and fill the matrix: this is mainly
due to the fact that the system solution invokestalucs which is a compiled library, while the
matrix fill-in is done directly in Scilab which imterpreted, and not compiled, leading to a less
performing run time.

The whole solution time is however always accegtavien for the finest mesh.
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Figure 4: The benchmark problem of a laminar flow aound a cylinder used to test our solver; the boundry
conditions are drawn in blue. The same problem hakeen solved using different computational strateggein [6];
the interested reader is addressed to this refereador more details.



Figure 5: The two meshes used for the benchmark. Othe top the coarse one (3486 unknowns) and on the
bottom the finer one (11478 unknowns).

nnz = 60284

Figure 6: The sparsity pattern of the system of lirar equations that have to be solved each iteratiofor the
solution of the first model of the channel benchmae (3486 unknowns) is drawn. It has to be noted thathe
pattern is symmetric with respect to the diagonalbut unfortunately the matrix is not. The non-zero erms
amount to 60294, leading to a storage requirementf®0294x(8+2*4) = 965 Kbytes, if a double precision
arithmetic is used. If a full square matrix were ugd, 11478*11478*8 = 1053956 Kbytes would be necegsa



The same problem has been solved also with ANSY8dA (2375 elements, 2523 nodes) and
results can be compared with the ones provided usysolver. The comparison is encouraging
because the global behavior is well captured al#éih whe coarser mesh and the numerical
differences registered between the maximum and nmuim values are always acceptable,
considering that different grids are used by tHeess.

Figure 7: Starting from top, the x and y componentsof velocity, the velocity magnitude and the pressa for
Reynolds number equal to 20, computed with the firremesh.



Figure 8: Starting from top, the x and y componentsof velocity, the velocity magnitude and the presse for
Reynolds number equal to 20, computed with the ANSS-Flotran solver (2375 elements, 2523 nodes).

Other two quantities have been computed and cordpaité the analogous quantities proposed in
[6]. The first one is the recirculation length, tthg the region behind the circle where the velocit
along x is not positive, whose expected value isvben 0.0842 and 0.0852; the coarser mesh
provides a value of 0.0836 and the finer one aevaftD.0846.

The second quantity which can be compared is tegspre drop across the circle, computed as the
difference between the pressures in (0.15; 0.2d) (&r25; 0.20); the expected value should fall
between 0.1172 and 0.1176. In our case the coawssn gives 0.1191 while the finer gives 0.1177.



Cavity flow problem

A second standard benchmark for incompressible #ogonsidered in this section. It is the flow of
an isothermal fluid in a square cavity with unidess, as schematically represented in Figure 9; the
velocity field has been set to zero along all tloeirimlaries, except than the upper one, where a
uniform unitary horizontal velocity has been impabsk order to make the problem solvable a zero
pressure has been imposed to the lower left cariniie cavity.

The interested reader is addressed to [3], whexestime benchmark problem has been solved.
Some comparisons between the position of the maitex obtained with our solver and the
analogous quantity computed by different authord anllected in [3] have been done and
summarized in Table 1. In Figure 10 the velocitgtoe (top) and magnitude (bottom) are plotted
for three different cases; the Reynolds humbeomsputed as the inverse of the kinematic viscosity,
being the reference length, the fluid density drelvelocity all set to one. As the Reynolds number
grows the center of the main vortex tends to moalggh the center of the cavity.

Figure 9: The geometry and the boundary conditionsf the second benchmark used to test the solver.

Il?\liygggs Author X y

Solver proposed in [3] 0.62 0.74

100 Burggraf (1996) 0.62 0.74
Tuann and Olson (1978) 0.61 0.722
Scilab solver 0.617 0.736
Solver proposed in [3] 0.568 0.606
Burggraf (1996) 0.560 0.620

400 Tuann and Olson (1978) 0.506 0.583
Ozawa (1975) 0.559 0.614
Scilab solver 0.558 0.606
Solver proposed in [3] 0.540 0.573

1000 Ozawa (1975) 0.533 0.569
Goda (1979) 0.538 0.575
Scilab solver 0.534 0.569

Table 1: The results collected in [3] have been repted here and compared with the analogous quantitis
computed with our solver (Scilab solver). A satisfetory agreement is observed.



Figure 10: The velocity vector (top) and the veloty magnitude (bottom) plotted superimposed to the msh for
OP QRR (left), for OP SRR (center) and for OP QRRR(right). The main vortex tends to the center of tie
cavity as the Reynolds numbers grows and secondavgrtexes appeatr.

Thermo-fluid simulation of an heat exchanger

The solver has been tested and it has been vetifegdt provides accurate results for low Reynolds
numbers. A new problem, may be more interestinghfam engineering point of view, has been
considered: let us imagine that a warm water fldengity of 1000 [Kg/r, viscosity of 510* [Pa

s], thermal conductivity 0.6 [W/m°C] and specifiedt 4186 [J/Kg°C]) with a given velocity enters
into a sort of heat exchanger where some hot esirate present. We would like to compute the
outlet fluid temperature imaging that the flow igfciently low to allow a pure Galerkin approach.

In Figure 11 the mesh for this model is drawn, tbge with some dimensioning: we decided to
consider only the upper part of this heat exchangerew of the symmetry with respect to the x-
axis. The mesh contains 10673 nodes, leading t8228locities and pressures nodal unknowns
and 10302 nodal temperatures unknowns.

The symmetry conditions are simply given by impgdmmogeneous vertical velocity and thermal
flux on the boundaries lying on the symmetry aXise horizontal inlet velocity follows a parabolic
law which goes to zero on the boundary and assummevdmum value of 10° [m/s] on the
symmetry axis. The inlet temperature is 20 [°C] #meltemperature of the circle surfaces has been
set to 50 [°C]. The outlet pressure has been sartmin order to get a unique solution.

As explained above, the velocity and pressure diedn be computed first and then the energy
equation can be tackled in a second phase to cemipaitemperature in each point.

In Figure 12 the fluid velocity magnitude and imgiie 13 the temperature field are drawn.



Figure 11: The heat exchanger considered in this wik. The symmetry axis is highlighted in blue and sme
dimensioning (in [cm]) is reported.

Figure 12: The velocity magnitude plotted superimpeed to the mesh.

Figure 13: The temperature field. It can be seen tt the inlet temperature is 20 [°C], the circles taperature is
50 [°C], while the outlet temperature vary from a nminimum of 32.60 [°C] up to a maximum of 44.58 [°C].

Conclusions

In this work it has been shown how it is possileuse Scilab to solve complex problems in an
efficient manner. In order to convince the reattat this is feasible, a solver for the Navier-Stoke
eqguations for the incompressible and stationany fias been implemented using the standard tools
provided with the Scilab distribution. Two exampleave been proposed and some comparisons
with results provided by commercial software andilable in the literature have been done in order
to test the solver.

It worth to mention that a certain background mité element analysis is obviously mandatory, but
no advanced programming skills are necessary tteimmgmnt the solver.
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