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The Navier-Stokes equations for the incompressible fluid 
 
Navier-Stokes equations can be derived applying the basic laws of mechanics, such as the 
conservation and the continuity principles, to a reference volume of fluid (see [2] for more details). 
After some mathematical manipulation one usually reaches the following system of equations: 
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which are known as the continuity, the momentum and the energy equation respectively and they 
have to be solved in the domain � , taking into account appropriate boundary conditions. The 
symbols “� � ” and “� ” are used to indicate the divergence and the gradient operator respectively, 
while � , 
  and �  are the unknown velocity vector, the pressure and the temperature fields. The 
fluid properties are the density � , the viscosity 	 , the thermal conductivity �  and the specific heat �  
which could depend, in a general case, on temperature. 
It has to be remembered that in the most general case equations in (1) could contain other terms, 
such as heat sources or body forces which in our case have been neglected. 
For sake of simplicity we imagine all the fluid properties as constant and we will consider, as 
mentioned above, only two dimensional domains. The former hypothesis represents a very 
important simplification because the energy equations completely decouple and therefore it can be 
solved separately once the velocity field has been computed using the first two equations. The latter 
one can be easily removed, with some additional effort in programming. 
It is fundamental to note that the momentum equation is non-linear, because of the presence of the 
advection term ���� . Moreover, the correct treatment of this term requires a special attention, as it 
will be briefly discussed in the following paragraphs, especially when its contribution becomes 
predominant with respect to the diffusive term. 
Another source of difficulty is given by the first equation, which represents the incompressibility 
condition: in the followings we will discuss also this aspect, even if the interested reader is 
addressed to the literature (see [2], [3]) for a more detailed discussion on these topics. 
For the solution of the equations reported in (1) we decide to use a traditional Galerkin weighted 
residual approach. As explained above, the energy equation can be solved separately and, for this 
reason, only the first two equations will be considered in the following. The same procedure 
identically applies also for the third one. 
It is necessary to introduce two virtual fields, 
�  and �� , which multiply the first and the second 
equation respectively and integrate them in the domain: 
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the divergence theorem can be invoked to rewrite the second equation in a more treatable way. It is 
possible to write: 
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The integral over the boundary vanishes, in view of the incompressibility constraint, and therefore 
the system (2) can be rewritten as: 
 



� !�� � 	�� � �� � ��� � � � �
"
�

�� � �

�� 
� � � � � � ��
�

� �
  [4] 

 
where the order of the equation has been changed. In order to solve numerically the above system it 
is necessary to introduce a discretization of the domain �  and choose appropriate test functions. It is 
well known (see for example [2]) that, in this case, the test functions used for the virtual velocity 
and pressure fields have to be chosen in order to satisfy the inf-sup condition (also known as 
Babuska-Brezzi condition). For this reason we decide to use the six-noded triangular elements 
depicted in Figure 2; the velocity field is modeled using quadratic shape functions and two 
unknowns at each node are considered, while the pressure is modeled using linear shape functions 
and only three unknowns are used at the corner nodes. In this way we have three unknowns in the 
corner nodes and only two in the element midside nodes. 
Equations (4) can be rewritten, once the discretization has been introduced, as the appropriate sum 
over the elements of certain contributions that can be computed numerically by means of a standard 
Gauss integration. The single element contribution can be seen, in matrix form, as: 
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where: 
 

$ � 	 � - . -�� /� 0
 is the diffusivity contribution, a (6 x 6) symmetric matrix The matrix -  (2 x 6) 

collects the first derivatives in the two directions of the quadratic shape functions. 

%��
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 is the convective non-linear contribution, a (6 x 6) unsymmetric matrix. 

The vector 1  collects the quadratic shape functions. 
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 is the pressure contribution, a (6 x 3) matrix. The vector 2��
  collects the first 

derivatives of the linear shape functions in the specified direction. 

(��
 � � 3 . - ��
 �� /� 0
 is the term coming from the incompressibility condition, a (3 x 6) matrix. The 

vector 3  collects the linear shape functions while - ��
  collects the first derivatives of the quadratic 
shape functions in the specified direction. 
 
All the integrals have to be evaluated on the element � / ; these contributions have been always 
computed using a “master element” (it is common practice in a finite element approach) and a 
Gauss technique with seven points. 
The element matrix is clearly unsymmetric and it contains also the nonlinear terms due to the 
convection. The peculiar structure of matrix (5), with some zero diagonal terms, suggests to 
interpret the pressure unknowns as a sort of Lagrangian multipliers which introduce a linear 
constraint in the model. This constraint is actually given by the incompressibility condition as 
imposed by the continuity equation. 
The element matrix and the known vector, which in our case is always zero, have to assembled into 
a global matrix and vector taking into account the applied boundary conditions. 
The solution strategy adopted to deal with the nonlinear nature of the equations system is probably 
the simplest one and it is usually known as the recursive approach (or Picard approach). An initial 
guess for the velocity field has to be provided and a first system of linear equations can be 
assembled and solved. In the element matrix %��
  reported above the term +��
  collects the guess 
velocity field. 



Once the linear system has been solved the new computed velocity field can be compared with the 
guess field: if no significant differences are found the solution process can be stopped otherwise a 
new iteration has to be performed using the new velocity field just computed as the guess field. 
This process usually leads to the solution in a reasonable amount of iterations and it has the 
advantage to be very easy to implement. For sure there are more effective techniques, such as for 
example the Newton-Raphson scheme, but they usually require to compute the jacobian of the 
system and they are longer to implement. 
We decide to use the following criterion to stop the iteration process: 
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where the index i represents the iteration step and @ is the solution vector, collecting both the 
velocity and pressure unknowns. 
 
The approach used in this document, that is a standard Galerkin weighted residuals, is not ideally 
suited for convection dominated problems: it is actually known that when the so-called Peclet 
number, which expresses the ratio between convective and diffusion contributions, grows the 
computed solution suffers from a non physical oscillatory behavior (see [2] for details). 
The same problem appears also when dealing with the energy equation (the third one in (2)), when 
the convective contribution is sufficiently high. 
This phenomenon can uniquely be ascribed to some deficiency of the numerical technique; for this 
reason many workarounds have been proposed to correctly deal with convection dominated 
problems. The most known are surely the streamline upwinding schemes, the Petrov-Galerkin, least 
square Galerkin approaches and other stabilization techniques. 
In this work we do not adopt any of these techniques, knowing that the computed solution with a 
pure Galerkin approach will be reliable only in the case of diffusion dominated problems. As 
already mentioned above, it could be in principle possible to implement whatever technique to 
improve the code and to make the solution process less sensitive to the flow nature, but this is not 
the objective of the work. 

 
Figure 2: The six-noded finite element used to discretize the fluid domain. The velocity field is modeled using 
quadratic shape functions and two unknowns at each black node are considered (Vx and Vy), while the pressure 
(P) is modeled using linear shape functions and only three unknowns are used at the corner nodes (the red ones). 

 
Implementation details 
 
The first step to deal with is surely to define the domain and its discretization. The best would be to 
have a parametric definition of the geometry in order to allow an easy, may be automatic, 



modification of the domain. To this aim we decided to use another open source software, Gmsh (see 
[2]), which has been chosen among the many others available because it is really easy to use, 
powerful, and it can be used also as a postprocessor and a graphical tool to visualize results. 
Then a text input file where the user provides all the information needed to define the model has to 
be organized. We decided to define some sections inside which the user specifies the fluid 
properties and the boundary conditions. In Figure 3 the input file for the channel problem solved in 
the following is shown. The section $Fluid, $Velocity and $Pressure can be easily recognized. In 
the first one a list of fluid properties for each fluid domain in the model is provided, while in the last 
two sections the velocity field in the two directions and the pressure on the boundaries are given. 
The Scilab solver has been organized in six files which contain some functions grouped together 
according to their role. In this way it is extremely easy to add and remove components to the solver 
leading to an easier software development. The main.sce function is charged to manage the solution 
process calling the proper functions when needed. Firstly, it is necessary to read the text file (*.msh) 
written by Gmsh containing the mesh and the input file given by the user. Then, all the data 
structures have to be organized and the matrices and vectors required for the subsequent numerical 
solution have to be allocated. 
The iterative process described above can now start: the global system of equations is computed and 
then solved: the best strategy to adopt in this case for the matrix storage is surely the sparse scheme, 
in order to reduce as much as possible the memory waste during the solution. The taucs library can 
be invoked to solve the linear system by means to an LU decomposition and get a result very fast 
and easy. It is worth mentioning that the solution of the linear system is invoked in Scilab with just 
three command lines: with the first one the LU decomposition is computed, with the second 
command the backward process is perform and finally the memory is cleaned up. 
This friendly and easy way of managing the solution of a linear system allows the user to access a 
very efficient library without spending too much time in developing dedicated code. 
At the end of each step the convergence has to be checked and eventually the process has to be 
iterated. Once the final solution has been found a result file is written and it can be read by Gmsh. 
 

$Fluid 
9 1 1.e-3   !Physical index, density, viscosity 
$End 
 
$Velocity 
1 1 1 0 0    !Physical index, code x, code y (1=assigned vel. in dir, 0=unknown vel. in dir), ux, uy 
3 1 1 0 0 
5 1 1 0 0 
6 1 1 0 0 
7 1 1 0 0 
8 1 1 0 0 
4 1 1 0.3 0 
$End 
 
$Pressure 
2 0       !Physical index, pressure value 
$End 
 

Figure 3: The input file used to set up the channel problem used as a benchmark problem. It can be seen that it 
has a very simple structure: there are some sections where the user can define the fluid properties and the 
boundary conditions directly on the physical (geometrical) entities defined in the model, and not on the nodes. 
This obviously simplify a lot the set up phase, allowing a very compact, clear and easy to change way to specify 
complex conditions also on different meshes of the same model. 

 
 
 



Benchmark computations of a laminar flow around a cylinder 
 
In order to test the solver just written with Scilab we decided to solve a simple problem which has 
been used by different authors (see [3], [6] for example) as a benchmark problem to test different 
numerical approaches for the solution of the incompressible, steady and unsteady, Navier-Stokes 
equations. In Figure 4 the problem is drawn, where the geometry and the boundary conditions can 
be found. The fluid density is set to 1 and the viscosity to 10-3. A parabolic (Poiseulle) velocity field 
in x direction is imposed at the inlet, as shown in equation (7), 
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with +G � �HI , and a zero pressure condition is imposed at the outlet. The velocity in both 
directions is imposed to be zero on the other boundaries. The Reynolds number is computed as 
JK � + $ LM , where the mean velocity at the inlet (+ � N+ G IM ), the circle diameter $  and the 
kinematic viscosity L � 	 �M  have been used. 
In Figure 5 the adopted meshes have been drawn. The first has 809 elements, 1729 nodes, totally 
3486 unknowns while the second has 2609 elements, 5409 nodes, totally 11478 unknowns. 
The computations can be performed on a common laptop pc. In our case, the user has to wait 
around 43 [sec] to solve the first mesh, while the total solution time is around 310 [sec] for the 
second model; in both cases 17 iterations are necessary to reach the convergence. The larger part of 
the solution time is spent to compute the element contributions and fill the matrix: this is mainly 
due to the fact that the system solution invokes the taucs, which is a compiled library, while the 
matrix fill-in is done directly in Scilab which is interpreted, and not compiled, leading to a less 
performing run time. 
The whole solution time is however always acceptable even for the finest mesh. 

 

 
Figure 4: The benchmark problem of a laminar flow around a cylinder used to test our solver; the boundary 
conditions are drawn in blue. The same problem has been solved using different computational strategies in [6]; 
the interested reader is addressed to this reference for more details. 



 
Figure 5: The two meshes used for the benchmark. On the top the coarse one (3486 unknowns) and on the 
bottom the finer one (11478 unknowns). 

 

 
Figure 6: The sparsity pattern of the system of linear equations that have to be solved each iteration for the 
solution of the first model of the channel benchmark (3486 unknowns) is drawn. It has to be noted that the 
pattern is symmetric with respect to the diagonal, but unfortunately the matrix is not. The non-zero terms 
amount to 60294, leading to a storage requirement of 60294x(8+2*4) = 965 Kbytes, if a double precision 
arithmetic is used. If a full square matrix were used, 11478*11478*8 = 1053956 Kbytes would be necessary! 

  



The same problem has been solved also with ANSYS-Flotran (2375 elements, 2523 nodes) and 
results can be compared with the ones provided by our solver. The comparison is encouraging 
because the global behavior is well captured also with the coarser mesh and the numerical 
differences registered between the maximum and minimum values are always acceptable, 
considering that different grids are used by the solvers. 
 

 
Figure 7: Starting from top, the x and y components of velocity, the velocity magnitude and the pressure for 
Reynolds number equal to 20, computed with the finer mesh. 

 



 
Figure 8: Starting from top, the x and y components of velocity, the velocity magnitude and the pressure for 
Reynolds number equal to 20, computed with the ANSYS-Flotran solver (2375 elements, 2523 nodes). 

 
Other two quantities have been computed and compared with the analogous quantities proposed in 
[6]. The first one is the recirculation length, that is the region behind the circle where the velocity 
along x is not positive, whose expected value is between 0.0842 and 0.0852; the coarser mesh 
provides a value of 0.0836 and the finer one a value of 0.0846. 
The second quantity which can be compared is the pressure drop across the circle, computed as the 
difference between the pressures in (0.15; 0.20) and (0.25; 0.20); the expected value should fall 
between 0.1172 and 0.1176. In our case the coarser mesh gives 0.1191 while the finer gives 0.1177. 
  



Cavity flow problem 
 
A second standard benchmark for incompressible flow is considered in this section. It is the flow of 
an isothermal fluid in a square cavity with unit sides, as schematically represented in Figure 9; the 
velocity field has been set to zero along all the boundaries, except than the upper one, where a 
uniform unitary horizontal velocity has been imposed. In order to make the problem solvable a zero 
pressure has been imposed to the lower left corner of the cavity. 
The interested reader is addressed to [3], where the same benchmark problem has been solved. 
Some comparisons between the position of the main vortex obtained with our solver and the 
analogous quantity computed by different authors and collected in [3] have been done and 
summarized in Table 1. In Figure 10 the velocity vector (top) and magnitude (bottom) are plotted 
for three different cases; the Reynolds number is computed as the inverse of the kinematic viscosity, 
being the reference length, the fluid density and the velocity all set to one. As the Reynolds number 
grows the center of the main vortex tends to mode trough the center of the cavity. 
 

 
Figure 9: The geometry and the boundary conditions of the second benchmark used to test the solver. 

 
Reynolds 
Number Author x y 

100 

Solver proposed in [3] 0.62 0.74 
Burggraf (1996) 0.62 0.74 
Tuann and Olson (1978) 0.61 0.722 
Scilab solver 0.617 0.736 

400 

Solver proposed in [3] 0.568 0.606 
Burggraf (1996) 0.560 0.620 
Tuann and Olson (1978) 0.506 0.583 
Ozawa (1975) 0.559 0.614 
Scilab solver 0.558 0.606 

1000 

Solver proposed in [3] 0.540 0.573 
Ozawa (1975) 0.533 0.569 
Goda (1979) 0.538 0.575 
Scilab solver 0.534 0.569 

Table 1: The results collected in [3] have been reported here and compared with the analogous quantities 
computed with our solver (Scilab solver). A satisfactory agreement is observed. 

 



 
 

 
Figure 10: The velocity vector (top) and the velocity magnitude (bottom) plotted superimposed to the mesh for 
OP � QRR (left), for OP � SRR (center) and for OP � QRRR (right). The main vortex tends to the center of the 
cavity as the Reynolds numbers grows and secondary vortexes appear. 

 
Thermo-fluid simulation of an heat exchanger 
 
The solver has been tested and it has been verified that it provides accurate results for low Reynolds 
numbers. A new problem, may be more interesting from an engineering point of view, has been 
considered: let us imagine that a warm water flow (density of 1000 [Kg/m3], viscosity of 5�10-4 [Pa 
s], thermal conductivity 0.6 [W/m°C] and specific heat 4186 [J/Kg°C]) with a given velocity enters 
into a sort of heat exchanger where some hot circles are present. We would like to compute the 
outlet fluid temperature imaging that the flow is sufficiently low to allow a pure Galerkin approach. 
In Figure 11 the mesh for this model is drawn, together with some dimensioning: we decided to 
consider only the upper part of this heat exchanger in view of the symmetry with respect to the x-
axis. The mesh contains 10673 nodes, leading to 22587 velocities and pressures nodal unknowns 
and 10302 nodal temperatures unknowns. 
The symmetry conditions are simply given by imposing homogeneous vertical velocity and thermal 
flux on the boundaries lying on the symmetry axis. The horizontal inlet velocity follows a parabolic 
law which goes to zero on the boundary and assume a maximum value of 1�10-3 [m/s] on the 
symmetry axis. The inlet temperature is 20 [°C] and the temperature of the circle surfaces has been 
set to 50 [°C]. The outlet pressure has been set to zero in order to get a unique solution. 
As explained above, the velocity and pressure fields can be computed first and then the energy 
equation can be tackled in a second phase to compute the temperature in each point. 
In Figure 12 the fluid velocity magnitude and in Figure 13 the temperature field are drawn. 

 



 
Figure 11: The heat exchanger considered in this work. The symmetry axis is highlighted in blue and some 
dimensioning (in [cm]) is reported. 

 

 
Figure 12: The velocity magnitude plotted superimposed to the mesh. 

 

 
Figure 13: The temperature field. It can be seen that the inlet temperature is 20 [°C], the circles temperature is 
50 [°C], while the outlet temperature vary from a minimum of 32.60 [°C] up to a maximum of 44.58 [°C]. 

 
Conclusions 
 
In this work it has been shown how it is possible to use Scilab to solve complex problems in an 
efficient manner. In order to convince the reader that this is feasible, a solver for the Navier-Stokes 
equations for the incompressible and stationary flow has been implemented using the standard tools 
provided with the Scilab distribution. Two examples have been proposed and some comparisons 
with results provided by commercial software and available in the literature have been done in order 
to test the solver. 
It worth to mention that a certain background in finite element analysis is obviously mandatory, but 
no advanced programming skills are necessary to implement the solver. 
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