
A simple finite element solver for the

Keywords: Scilab, Open source software,

Introduction

Scilab is an open source software pac
freely distributed by the Scilab Consortium
It offers a high level programming language and this allows the user to fast implement his/her own
applications in a smart way, without requiring
developed by the users all over the world and made available through the internet
opportunity to create complex, efficient and multiplatform applications.
Scilab is considered to be as a clone
in common; the programming language
they both use a compiled version of numerical libraries to make basic computations efficient, they
offer nice graphical tools and more. Shortly, they
advantage to be completely free.
Unfortunately, Scilab is not widely
MATLAB and MATLAB SIMULINK
historical advantage that MATLAB
first software of this kind to be p
undoubtedly important to remember that
have (yet) and in some cases this could be determinant.
investment and number of people involved and, according to the author opinion, also the need to
satisfy the market, lead to a faster
marketing has played a fundamental role in the diffusion of
Scilab is mainly used for teaching purposes and, probably for th
adequate for the solution of real engineering problems. This is absolutely false and we would like to
demonstrate, within this document
Scilab also for non trivial problems.
To this aim we choose the Navier
fluid motion. The numerical solution of such equations is actually considered a difficult
challenging task, as it can be seen reading [
a strong background in fluid dynamics he/she can obviously implement more complex models than
the one proposed in this document using the same Scilab platform.
Anyway, there are some industrial problems that can be
equations: heat exchangers, boilers

Figure 1: The Scilab logo (on the left) and the puffin logo (on the right).
of Scilab Scientific Board, chose a puffin
carried in the endeavor of developing open

A simple finite element solver for the stationary and incompressible Navier

Open source software, Navier-Stokes equations

software package for scientific and numerical comput
freely distributed by the Scilab Consortium (see [1]).
It offers a high level programming language and this allows the user to fast implement his/her own

, without requiring strong programming skills
developed by the users all over the world and made available through the internet

create complex, efficient and multiplatform applications.
clone of the most known MATLAB, they actually
languages are very similar (even if some differences are present),

they both use a compiled version of numerical libraries to make basic computations efficient, they
graphical tools and more. Shortly, they adopt the same philosophy

widely spread in the industrial context where

IMULINK are the most known and used. This is probably due to the
MATLAB has over all the competitors; do not forget that

first software of this kind to be proposed to the market in the mid of the 80’s
undoubtedly important to remember that MATLAB has many built-in functions that Scilab do not
have (yet) and in some cases this could be determinant. The longer experience, the larger

number of people involved and, according to the author opinion, also the need to
to a faster software development. As in many other occasions

a fundamental role in the diffusion of the product.
Scilab is mainly used for teaching purposes and, probably for this reason, it is often considered not

on of real engineering problems. This is absolutely false and we would like to
this document, that it is possible to develop efficient and reliable solvers

Scilab also for non trivial problems.
To this aim we choose the Navier-Stokes equations to model a planar stationary and incompressible

The numerical solution of such equations is actually considered a difficult
as it can be seen reading [3] and [4] just to provide two references

a strong background in fluid dynamics he/she can obviously implement more complex models than
the one proposed in this document using the same Scilab platform.

here are some industrial problems that can be adequately modeled
ions: heat exchangers, boilers and more just to cite some applications.

: The Scilab logo (on the left) and the puffin logo (on the right). Dr. Hu Baogang, Contributor Member
of Scilab Scientific Board, chose a puffin because “The image of puffin reflects a spirit of freedom with proud, as
carried in the endeavor of developing open-source software [...]”.

incompressible Navier-Stokes equations

numerical computing developed and

It offers a high level programming language and this allows the user to fast implement his/her own
programming skills. Many toolboxes,

developed by the users all over the world and made available through the internet, represent a real

actually have many points
s are very similar (even if some differences are present),

they both use a compiled version of numerical libraries to make basic computations efficient, they
the same philosophy, but Scilab has the

the industrial context where, on the contrary,
used. This is probably due to the

has over all the competitors; do not forget that it has been the
of the 80’s. However, it is

in functions that Scilab do not
The longer experience, the larger

number of people involved and, according to the author opinion, also the need to
in many other occasions, also the

reason, it is often considered not
on of real engineering problems. This is absolutely false and we would like to

that it is possible to develop efficient and reliable solvers using

stationary and incompressible
The numerical solution of such equations is actually considered a difficult and

] just to provide two references. If the user has
a strong background in fluid dynamics he/she can obviously implement more complex models than

modeled through these

Baogang, Contributor Member
because “The image of puffin reflects a spirit of freedom with proud, as

The Navier-Stokes equations for the incompressible fluid

Navier-Stokes equations can be derived applying the basic laws of mechanics, such as the
conservation and the continuity principles, to a reference volume of fluid (see [2] for more details).
After some mathematical manipulation one usually reaches the following system of equations:

�
� � � � �

�� � � 	��
 � ���� � �
 � �����������
�� � � ���
 � ����� � �

������ [1]

which are known as the continuity, the momentum and the energy equation respectively and they
have to be solved in the domain � , taking into account appropriate boundary conditions. The
symbols “� � ” and “� ” are used to indicate the divergence and the gradient operator respectively,
while � ,
 and � are the unknown velocity vector, the pressure and the temperature fields. The
fluid properties are the density � , the viscosity 	 , the thermal conductivity � and the specific heat �
which could depend, in a general case, on temperature.
It has to be remembered that in the most general case equations in (1) could contain other terms,
such as heat sources or body forces which in our case have been neglected.
For sake of simplicity we imagine all the fluid properties as constant and we will consider, as
mentioned above, only two dimensional domains. The former hypothesis represents a very
important simplification because the energy equations completely decouple and therefore it can be
solved separately once the velocity field has been computed using the first two equations. The latter
one can be easily removed, with some additional effort in programming.
It is fundamental to note that the momentum equation is non-linear, because of the presence of the
advection term ���� . Moreover, the correct treatment of this term requires a special attention, as it
will be briefly discussed in the following paragraphs, especially when its contribution becomes
predominant with respect to the diffusive term.
Another source of difficulty is given by the first equation, which represents the incompressibility
condition: in the followings we will discuss also this aspect, even if the interested reader is
addressed to the literature (see [2], [3]) for a more detailed discussion on these topics.
For the solution of the equations reported in (1) we decide to use a traditional Galerkin weighted
residual approach. As explained above, the energy equation can be solved separately and, for this
reason, only the first two equations will be considered in the following. The same procedure
identically applies also for the third one.
It is necessary to introduce two virtual fields,
� and �� , which multiply the first and the second
equation respectively and integrate them in the domain:

�
� � � � � � ��
�

� �

� �� � �� � � 	��
 � ���� � �
 �
�

�� � �
 [2]

the divergence theorem can be invoked to rewrite the second equation in a more treatable way. It is
possible to write:

� �� � � 	��
�

�� � � �� 	�� � � � �� � � �� � 	��
�

��

 [3]

The integral over the boundary vanishes, in view of the incompressibility constraint, and therefore
the system (2) can be rewritten as:

� !�� � 	�� � �� � ��� � � � �
"
�

�� � �

��
� � � � � � ��
�

� �
 [4]

where the order of the equation has been changed. In order to solve numerically the above system it
is necessary to introduce a discretization of the domain � and choose appropriate test functions. It is
well known (see for example [2]) that, in this case, the test functions used for the virtual velocity
and pressure fields have to be chosen in order to satisfy the inf-sup condition (also known as
Babuska-Brezzi condition). For this reason we decide to use the six-noded triangular elements
depicted in Figure 2; the velocity field is modeled using quadratic shape functions and two
unknowns at each node are considered, while the pressure is modeled using linear shape functions
and only three unknowns are used at the corner nodes. In this way we have three unknowns in the
corner nodes and only two in the element midside nodes.
Equations (4) can be rewritten, once the discretization has been introduced, as the appropriate sum
over the elements of certain contributions that can be computed numerically by means of a standard
Gauss integration. The single element contribution can be seen, in matrix form, as:

#
$ � % & �
 &

� $ � % '
 '

(& (' �
) � *

+&
+ '

, � *

�
�
�
, [5]

where:

$ � 	 � - . -�� /� 0
 is the diffusivity contribution, a (6 x 6) symmetric matrix The matrix - (2 x 6)

collects the first derivatives in the two directions of the quadratic shape functions.

%��
 � �� � 1+ ��
 1 . -�� /� 0
 is the convective non-linear contribution, a (6 x 6) unsymmetric matrix.

The vector 1 collects the quadratic shape functions.

 ��
 � � 1 . 2��
 �� /� 0
 is the pressure contribution, a (6 x 3) matrix. The vector 2��
 collects the first

derivatives of the linear shape functions in the specified direction.

(��
 � � 3 . - ��
 �� /� 0
 is the term coming from the incompressibility condition, a (3 x 6) matrix. The

vector 3 collects the linear shape functions while - ��
 collects the first derivatives of the quadratic
shape functions in the specified direction.

All the integrals have to be evaluated on the element � / ; these contributions have been always
computed using a “master element” (it is common practice in a finite element approach) and a
Gauss technique with seven points.
The element matrix is clearly unsymmetric and it contains also the nonlinear terms due to the
convection. The peculiar structure of matrix (5), with some zero diagonal terms, suggests to
interpret the pressure unknowns as a sort of Lagrangian multipliers which introduce a linear
constraint in the model. This constraint is actually given by the incompressibility condition as
imposed by the continuity equation.
The element matrix and the known vector, which in our case is always zero, have to assembled into
a global matrix and vector taking into account the applied boundary conditions.
The solution strategy adopted to deal with the nonlinear nature of the equations system is probably
the simplest one and it is usually known as the recursive approach (or Picard approach). An initial
guess for the velocity field has to be provided and a first system of linear equations can be
assembled and solved. In the element matrix %��
 reported above the term +��
 collects the guess
velocity field.

Once the linear system has been solved the new computed velocity field can be compared with the
guess field: if no significant differences are found the solution process can be stopped otherwise a
new iteration has to be performed using the new velocity field just computed as the guess field.
This process usually leads to the solution in a reasonable amount of iterations and it has the
advantage to be very easy to implement. For sure there are more effective techniques, such as for
example the Newton-Raphson scheme, but they usually require to compute the jacobian of the
system and they are longer to implement.
We decide to use the following criterion to stop the iteration process:

45675 6894

4564
: ;<= � >� 7? [6]

where the index i represents the iteration step and @ is the solution vector, collecting both the
velocity and pressure unknowns.

The approach used in this document, that is a standard Galerkin weighted residuals, is not ideally
suited for convection dominated problems: it is actually known that when the so-called Peclet
number, which expresses the ratio between convective and diffusion contributions, grows the
computed solution suffers from a non physical oscillatory behavior (see [2] for details).
The same problem appears also when dealing with the energy equation (the third one in (2)), when
the convective contribution is sufficiently high.
This phenomenon can uniquely be ascribed to some deficiency of the numerical technique; for this
reason many workarounds have been proposed to correctly deal with convection dominated
problems. The most known are surely the streamline upwinding schemes, the Petrov-Galerkin, least
square Galerkin approaches and other stabilization techniques.
In this work we do not adopt any of these techniques, knowing that the computed solution with a
pure Galerkin approach will be reliable only in the case of diffusion dominated problems. As
already mentioned above, it could be in principle possible to implement whatever technique to
improve the code and to make the solution process less sensitive to the flow nature, but this is not
the objective of the work.

Figure 2: The six-noded finite element used to discretize the fluid domain. The velocity field is modeled using
quadratic shape functions and two unknowns at each black node are considered (Vx and Vy), while the pressure
(P) is modeled using linear shape functions and only three unknowns are used at the corner nodes (the red ones).

Implementation details

The first step to deal with is surely to define the domain and its discretization. The best would be to
have a parametric definition of the geometry in order to allow an easy, may be automatic,

modification of the domain. To this aim we decided to use another open source software, Gmsh (see
[2]), which has been chosen among the many others available because it is really easy to use,
powerful, and it can be used also as a postprocessor and a graphical tool to visualize results.
Then a text input file where the user provides all the information needed to define the model has to
be organized. We decided to define some sections inside which the user specifies the fluid
properties and the boundary conditions. In Figure 3 the input file for the channel problem solved in
the following is shown. The section $Fluid, $Velocity and $Pressure can be easily recognized. In
the first one a list of fluid properties for each fluid domain in the model is provided, while in the last
two sections the velocity field in the two directions and the pressure on the boundaries are given.
The Scilab solver has been organized in six files which contain some functions grouped together
according to their role. In this way it is extremely easy to add and remove components to the solver
leading to an easier software development. The main.sce function is charged to manage the solution
process calling the proper functions when needed. Firstly, it is necessary to read the text file (*.msh)
written by Gmsh containing the mesh and the input file given by the user. Then, all the data
structures have to be organized and the matrices and vectors required for the subsequent numerical
solution have to be allocated.
The iterative process described above can now start: the global system of equations is computed and
then solved: the best strategy to adopt in this case for the matrix storage is surely the sparse scheme,
in order to reduce as much as possible the memory waste during the solution. The taucs library can
be invoked to solve the linear system by means to an LU decomposition and get a result very fast
and easy. It is worth mentioning that the solution of the linear system is invoked in Scilab with just
three command lines: with the first one the LU decomposition is computed, with the second
command the backward process is perform and finally the memory is cleaned up.
This friendly and easy way of managing the solution of a linear system allows the user to access a
very efficient library without spending too much time in developing dedicated code.
At the end of each step the convergence has to be checked and eventually the process has to be
iterated. Once the final solution has been found a result file is written and it can be read by Gmsh.

$Fluid
9 1 1.e-3 !Physical index, density, viscosity
$End

$Velocity
1 1 1 0 0 !Physical index, code x, code y (1=assigned vel. in dir, 0=unknown vel. in dir), ux, uy
3 1 1 0 0
5 1 1 0 0
6 1 1 0 0
7 1 1 0 0
8 1 1 0 0
4 1 1 0.3 0
$End

$Pressure
2 0 !Physical index, pressure value
$End

Figure 3: The input file used to set up the channel problem used as a benchmark problem. It can be seen that it
has a very simple structure: there are some sections where the user can define the fluid properties and the
boundary conditions directly on the physical (geometrical) entities defined in the model, and not on the nodes.
This obviously simplify a lot the set up phase, allowing a very compact, clear and easy to change way to specify
complex conditions also on different meshes of the same model.

Benchmark computations of a laminar flow around a cylinder

In order to test the solver just written with Scilab we decided to solve a simple problem which has
been used by different authors (see [3], [6] for example) as a benchmark problem to test different
numerical approaches for the solution of the incompressible, steady and unsteady, Navier-Stokes
equations. In Figure 4 the problem is drawn, where the geometry and the boundary conditions can
be found. The fluid density is set to 1 and the viscosity to 10-3. A parabolic (Poiseulle) velocity field
in x direction is imposed at the inlet, as shown in equation (7),

�
+&� A
 �

BCD ' � E7'

EF

+ ' � A
 � �
� [7]

with +G � �HI , and a zero pressure condition is imposed at the outlet. The velocity in both
directions is imposed to be zero on the other boundaries. The Reynolds number is computed as
JK � + $ LM , where the mean velocity at the inlet (+ � N+ G IM), the circle diameter $ and the
kinematic viscosity L � 	 �M have been used.
In Figure 5 the adopted meshes have been drawn. The first has 809 elements, 1729 nodes, totally
3486 unknowns while the second has 2609 elements, 5409 nodes, totally 11478 unknowns.
The computations can be performed on a common laptop pc. In our case, the user has to wait
around 43 [sec] to solve the first mesh, while the total solution time is around 310 [sec] for the
second model; in both cases 17 iterations are necessary to reach the convergence. The larger part of
the solution time is spent to compute the element contributions and fill the matrix: this is mainly
due to the fact that the system solution invokes the taucs, which is a compiled library, while the
matrix fill-in is done directly in Scilab which is interpreted, and not compiled, leading to a less
performing run time.
The whole solution time is however always acceptable even for the finest mesh.

Figure 4: The benchmark problem of a laminar flow around a cylinder used to test our solver; the boundary
conditions are drawn in blue. The same problem has been solved using different computational strategies in [6];
the interested reader is addressed to this reference for more details.

Figure 5: The two meshes used for the benchmark. On the top the coarse one (3486 unknowns) and on the
bottom the finer one (11478 unknowns).

Figure 6: The sparsity pattern of the system of linear equations that have to be solved each iteration for the
solution of the first model of the channel benchmark (3486 unknowns) is drawn. It has to be noted that the
pattern is symmetric with respect to the diagonal, but unfortunately the matrix is not. The non-zero terms
amount to 60294, leading to a storage requirement of 60294x(8+2*4) = 965 Kbytes, if a double precision
arithmetic is used. If a full square matrix were used, 11478*11478*8 = 1053956 Kbytes would be necessary!

The same problem has been solved also with ANSYS-Flotran (2375 elements, 2523 nodes) and
results can be compared with the ones provided by our solver. The comparison is encouraging
because the global behavior is well captured also with the coarser mesh and the numerical
differences registered between the maximum and minimum values are always acceptable,
considering that different grids are used by the solvers.

Figure 7: Starting from top, the x and y components of velocity, the velocity magnitude and the pressure for
Reynolds number equal to 20, computed with the finer mesh.

Figure 8: Starting from top, the x and y components of velocity, the velocity magnitude and the pressure for
Reynolds number equal to 20, computed with the ANSYS-Flotran solver (2375 elements, 2523 nodes).

Other two quantities have been computed and compared with the analogous quantities proposed in
[6]. The first one is the recirculation length, that is the region behind the circle where the velocity
along x is not positive, whose expected value is between 0.0842 and 0.0852; the coarser mesh
provides a value of 0.0836 and the finer one a value of 0.0846.
The second quantity which can be compared is the pressure drop across the circle, computed as the
difference between the pressures in (0.15; 0.20) and (0.25; 0.20); the expected value should fall
between 0.1172 and 0.1176. In our case the coarser mesh gives 0.1191 while the finer gives 0.1177.

Cavity flow problem

A second standard benchmark for incompressible flow is considered in this section. It is the flow of
an isothermal fluid in a square cavity with unit sides, as schematically represented in Figure 9; the
velocity field has been set to zero along all the boundaries, except than the upper one, where a
uniform unitary horizontal velocity has been imposed. In order to make the problem solvable a zero
pressure has been imposed to the lower left corner of the cavity.
The interested reader is addressed to [3], where the same benchmark problem has been solved.
Some comparisons between the position of the main vortex obtained with our solver and the
analogous quantity computed by different authors and collected in [3] have been done and
summarized in Table 1. In Figure 10 the velocity vector (top) and magnitude (bottom) are plotted
for three different cases; the Reynolds number is computed as the inverse of the kinematic viscosity,
being the reference length, the fluid density and the velocity all set to one. As the Reynolds number
grows the center of the main vortex tends to mode trough the center of the cavity.

Figure 9: The geometry and the boundary conditions of the second benchmark used to test the solver.

Reynolds
Number Author x y

100

Solver proposed in [3] 0.62 0.74
Burggraf (1996) 0.62 0.74
Tuann and Olson (1978) 0.61 0.722
Scilab solver 0.617 0.736

400

Solver proposed in [3] 0.568 0.606
Burggraf (1996) 0.560 0.620
Tuann and Olson (1978) 0.506 0.583
Ozawa (1975) 0.559 0.614
Scilab solver 0.558 0.606

1000

Solver proposed in [3] 0.540 0.573
Ozawa (1975) 0.533 0.569
Goda (1979) 0.538 0.575
Scilab solver 0.534 0.569

Table 1: The results collected in [3] have been reported here and compared with the analogous quantities
computed with our solver (Scilab solver). A satisfactory agreement is observed.

Figure 10: The velocity vector (top) and the velocity magnitude (bottom) plotted superimposed to the mesh for
OP � QRR (left), for OP � SRR (center) and for OP � QRRR (right). The main vortex tends to the center of the
cavity as the Reynolds numbers grows and secondary vortexes appear.

Thermo-fluid simulation of an heat exchanger

The solver has been tested and it has been verified that it provides accurate results for low Reynolds
numbers. A new problem, may be more interesting from an engineering point of view, has been
considered: let us imagine that a warm water flow (density of 1000 [Kg/m3], viscosity of 5�10-4 [Pa
s], thermal conductivity 0.6 [W/m°C] and specific heat 4186 [J/Kg°C]) with a given velocity enters
into a sort of heat exchanger where some hot circles are present. We would like to compute the
outlet fluid temperature imaging that the flow is sufficiently low to allow a pure Galerkin approach.
In Figure 11 the mesh for this model is drawn, together with some dimensioning: we decided to
consider only the upper part of this heat exchanger in view of the symmetry with respect to the x-
axis. The mesh contains 10673 nodes, leading to 22587 velocities and pressures nodal unknowns
and 10302 nodal temperatures unknowns.
The symmetry conditions are simply given by imposing homogeneous vertical velocity and thermal
flux on the boundaries lying on the symmetry axis. The horizontal inlet velocity follows a parabolic
law which goes to zero on the boundary and assume a maximum value of 1�10-3 [m/s] on the
symmetry axis. The inlet temperature is 20 [°C] and the temperature of the circle surfaces has been
set to 50 [°C]. The outlet pressure has been set to zero in order to get a unique solution.
As explained above, the velocity and pressure fields can be computed first and then the energy
equation can be tackled in a second phase to compute the temperature in each point.
In Figure 12 the fluid velocity magnitude and in Figure 13 the temperature field are drawn.

Figure 11: The heat exchanger considered in this work. The symmetry axis is highlighted in blue and some
dimensioning (in [cm]) is reported.

Figure 12: The velocity magnitude plotted superimposed to the mesh.

Figure 13: The temperature field. It can be seen that the inlet temperature is 20 [°C], the circles temperature is
50 [°C], while the outlet temperature vary from a minimum of 32.60 [°C] up to a maximum of 44.58 [°C].

Conclusions

In this work it has been shown how it is possible to use Scilab to solve complex problems in an
efficient manner. In order to convince the reader that this is feasible, a solver for the Navier-Stokes
equations for the incompressible and stationary flow has been implemented using the standard tools
provided with the Scilab distribution. Two examples have been proposed and some comparisons
with results provided by commercial software and available in the literature have been done in order
to test the solver.
It worth to mention that a certain background in finite element analysis is obviously mandatory, but
no advanced programming skills are necessary to implement the solver.

References

[1] http://www.scilab.org/ to have more information on Scilab
[2] The Gmsh can be freely downloaded from: http://www.geuz.org/gmsh/
[3] J. Donea, A. Huerta, Finite Element Methods for Flow Problems, (2003) Wiley
[4] J. H. Ferziger, M. Peric, Computational Methods for Fluid Dynamics, (2002) Springer, third
edition
[5] R. Rannacher, Finite Element Methods for the Incompressible Navier-Stokes Equations, (1999)
downloaded from http://ganymed.iwr.uni-heidelberg.de/Oberwolfach-Seminar
[6] M. Schafer, S. Turek, Benchmark Computations of laminar Flow Around a Cylinder,
downloaded from http://www.mathematik.uni-dortmund.de/de/personen/person/Stefan+Turek.html

Contacts

For more information on this document please contact the author:

Massimiliano Margonari
Enginsoft S.p.A.
m.margonari@enginsoft.it

